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Abstract—In image/video systems, contrast adjustment which
manages to enhance visual quality is nowadays an important
research topic. Yet very limited struggles have been made
to the exploration of visual quality assessment for contrast
adjustment. To tackle the issue, this paper proposes a novel
reduced-reference (RR) quality metric with the integration of
bottom-up and top-down strategies. The former one stems from
the recently revealed free energy principle that tells that the
human visual system seeks to comprehend an input image
via uncertainty removal, while the latter one is toward using
the symmetric Kullback–Leibler divergence to compare the
histogram of the contrast-altered image with that of the pris-
tine image. The bottom-up and top-down strategies are lastly
incorporated to derive the RR contrast-altered image quality
measure. A comparison using numerous existing IQA mod-
els is carried out on five contrast related databases/subsets
in CID2013, CCID2014, CSIQ, TID2008, and TID2013, and
experimental results validate the superiority of the proposed
technique.

Index Terms—Contrast alteration, quality assessment (QA),
reduced-reference (RR), hybrid parametric and non-parametric
model (HPNP), bottom-up, top-down.

I. INTRODUCTION

DURING recent years, the importance of visual media with
ubiquitous applications have become obvious. Images

and videos in most conditions are provided to human con-
sumers. As the users’ requirements and expectations for
high-quality images / videos are increasingly rising, a reli-
able system to evaluate, control and improve the users’ quality
of experience (QoE) is urgently required, e.g., in some ele-
gant technologies of compression [1], [2], enhancement [3],
tone mapping [4], etc. This results in the demand of effective
metrics of image quality assessment (IQA) for predicting the
quality in accordance with human visual perception.
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IQA can be classified into subjective assessment and objec-
tive assessment. The first captures human ratings of visual
quality, namely, mean opinion scores (MOSs). But it easily
suffers the drawbacks of being time-consuming, expensive and
unpractical, and this thereby leads to the study of objective
assessment, which aims to evaluate the image quality using
mathematical models to estimate subjective ratings.

Referring to the accessability of original visual signals to be
compared with during the computation, objective IQA metrics
can be further divided into three types: 1) full-reference (FR)
IQA; 2) reduced-reference (RR) IQA; 3) no-reference (NR)
IQA. This paper mainly discusses the former two. The FR
peak signal-to-noise ratio (PSNR) has prevailed for years,
in view of its computational simplicity and clear physi-
cal meaning. However they do not constantly well corre-
late with human judgments of quality [5]. As a result, the
last few years have witnessed the emergence of numer-
ous FR IQA metrics [6], [7], [9]–[16]. The most famous
one is perhaps the structural similarity index (SSIM) [6],
which compares luminance, contrast and structural similari-
ties of the original and corrupted images. Thereafter, many
modified SSIM-type of metrics have been devised, e.g., multi-
scale SSIM (MS-SSIM) [7], optimal scale selection-based
SSIM (OSS-SSIM) [8], and analysis of distortion distribution-
based SSIM (ADD-SSIM) [9].

During the recent decade, a great amount of FR IQA
algorithms were devised in other tactics. For instance, the
most apparent distortion (MAD) [11] utilizes the detection-
and appearance-based model to assess the visual quality. The
feature similarity index (FSIM) [12] and gradient similarity
index (GSI) [13] consider the fact that the perception of an
image by the human visual system (HVS) primarily relies on
classical low-level features - magnitude and phase.

Assuming that the partial original image or some extracted
features is used as side information, RR-IQA is applicable
to a wider range of practical scenarios [17]–[21]. Referring
to the recent discovery of free energy theory [22], the free
energy based distortion metric (FEDM) [17] was explored
by mimicking the brain generative model to characterize the
input image signals. Some metrics, e.g., structural degradation
model (SDM) [18], manage to improve FR SSIM to be valid
RR techniques with few numbers.

Nonetheless, very limited efforts have been devoted to the
field of IQA with contrast change [23], [24]. In [24], a novel
patch based FR-IQA method for contrast quality evaluation
was proposed. Moreover, existing IQA algorithms do not
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work well in this field. As a matter of fact, contrast is an
important research topic [25], which has practical applica-
tions in image/video systems such as contrast enhancement
technologies [26]–[28]. This motivates the design of a new
specialized contrast-changed image database (CID2013) [29],
including 400 contrast-changed images by mean shifting
and four kinds of transfer mappings, and its advanced
version (CCID2014) [30].

In this paper we further explore the issue of contrast-
adjusted IQA, and develop a new RR IQA model with the
combination of bottom-up and top-down strategies. Relative
to the frequently seen distortion types, e.g., JPEG / JPEG2000
compressions, the human visual sensation of image con-
trast (mainly including brightness and contrast alteration)
inclines to the measurement in visual and psychological fields.
A recently revealed free energy principle indicates that the
HVS attempts to understand a visual signal through reducing
the uncertainty and measures the psychovisual quality to be the
agreement of an input image and its explanations derived by
the internal generative model. With this, we evaluate the visual
quality of contrast-altered images in the bottom-up model
combining the generative model, which is constructed by
the non-parametric autoregressive (AR) model via perceptual
information for weighting.

On the other hand, as argued in several existing con-
trast enhancement methods [26], [27], the histogram mod-
ification can lead to the contrast adjustment and largely
influence users’ experiences. The top-down strategy is to com-
pare two distances between histograms; one is between the
contrast-adjusted image and its original version, and the other
is between the contrast-altered image and the one created
from the original image through histogram equalization. The
Kullback-Leibler (K-L) divergence [31], one of the most pop-
ular information-theoretic “distances” comparing two proba-
bility distributions, is naturally taken into account. But the
K-L divergence is non-symmetric and brings unstable results
in calculation. So we use the symmetrized and smoothed
Jensen-Shannon (JS) divergence [32] to compute the two dis-
tances stated above. Finally, the bottom-up and top-down
strategies are combined to develop the Reduced-reference
Contrast-changed Image Quality Measure (RCIQM), whose
superiority is verified over existing visual quality evaluators.

The remainder of this paper is arranged below. Section II
first reviews existing contrast relevant image databases. In
Section III, we construct the bottom-up and top-down mod-
els followed by combining them to put forward the RCIQM
metric. Section IV conducts comparative studies of our mea-
sure with numerous existing FR- and RR-IQA methods on
CID2013 [29], CDID2014 [30], CSIQ [11], TID2008 [33] and
TID2013 [34] databases, and then reports and discusses the
results of experiments. Section V concludes this paper.

II. CONTRAST RELATED IMAGE DATABASES

The explorations of modern visual quality evaluation date
from the beginning of this century, yet they mainly focused
their attentions on the commonly seen compression, Gaussian
blur and white noise, until the TID2008 database released.

Fig. 1. Sample images in the TID2008 database [33]: (a) average shifting;
(b) contrast change.

Fig. 2. Typical contrast-changed images in the CSIQ database [11].

Fig. 3. Transfer curves in the CID2013 database [29]: (a) concave arcs;
(b) convex arcs; (c) cubic functions; (d) logistic functions.

In that database, contrast related image subsets (mean shifting
and contrast change) and associated MOS values were first
open to the public. For a direct and clear understanding, we
show a group of classical mean-shifted and contrast-changed
images in Fig. 1. These images are obviously different from
the aforesaid four distortion types. Soon after the emergence
of TID2008, the CSIQ database consisting of contrast-altered
images was also released, as given in Fig. 2. Instead of using
the classical natural images in TID2008, which come from
the Kodak database [35], CSIQ applies 30 new source images
spanning a wider range of contents and scenes.

In practice, contrast-changed IQA metrics can be employed
to instruct and optimize contrast enhancement schemes, which
are of extreme significance in many cases for the purpose of
increasing the image contrast and thus improving the image
quality, even superior to the pristine version. None of exist-
ing IQA models, however, has satisfactory performance, as
given in the experimental results later. Furthermore, contrast
related images in TID2008, CSIQ and TID2013 are not numer-
ous enough. To that end, we recently introduced a particular
and challenging CID2013 database [29], which is composed
of fifteen natural images from the Kodak database and 400
contrast-altered images and corresponding subjective opinion
scores from inexperienced observers with different majors.
Those images can be separated into two classes. The first
class is produced with mean shifting the original image Io
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Fig. 4. Sample images in the CID2013 database [29].

with positive or negative number (+�I or −�I). The shift
�I has six degrees of {20, 40, 60, 80, 100, 120}. The second
class of contrast-changed images is generated using transfer
mappings, including concave arc, convex arc, cubic function
and logistic function. We present the transfer curves in Fig. 3
and several examples in Fig. 4. Later, we have also extended
the CID2013 to a larger-scale CCID2014 database with 655
contrast-altered images [30].

III. PROPOSED RCIQM METRIC

We first list important notations and abbreviations in Table I
for readers’ conveniences to follow the subsequent context
easily.

A. Bottom-Up Strategy

It is widely argued that people would prefer a visual signal
with balanced lighting and proper contrast. In comparison to
typical distortion types, e.g., image / video coding, the HVS
perception to image contrast, which is affected by luminance
and contrast variation, is supposed to highly correlate with the
visual and psychological measurement. We first establish the
bottom-up model based on the free energy principle, which
generates an approximating estimation of the psychovisual
quality [17].

TABLE I
IMPORTANT NOTATIONS AND ABBREVIATIONS

To specify, Friston recently revealed that free energy can
explain and unify some existing brain principles in physical
and biological sciences regarding learning, action and per-
ception. The primary supposition behind it lies in that the
perception process is managed by an internal generative model
in brain, akin to the Bayesian-based brain assumption [36].
Using this model, the brain is able to construct a manner
to actively infer the valuable information from input image
signals and reduce the uncertain residual. This manner can
be regarded as a probabilistic model, and we can decompose
it into a likelihood term and a prior term. Inverting the first
term, the HVS can deduce the posterior possibility of the given
image. A gap naturally exists between the real external scene
and the brain’s estimation, due to the non-universal internal
generative model. We reasonably suppose the difference of
the external given image and its output generative-model-
explainable part to be highly connected to the psychovisual
quality, and even used to assess contrast-changed images.

Note that the free energy is an error difference map of the
input image and its resulting optimal explanation estimated by
the brain generative model. In this error difference map, higher
value pixels represent hard explained areas, while lower value
regions indicate easily described pixels with the generative
model. The error difference map is acquired through making
free energy minimized. On the basis of the analysis in [37],
the free-energy minimization has a strong connection to the
predictive coding. So we are capable of approximating it to
be the entropy of the residuals of the input visual signal and
its reconstructed one.

The internal generative model is defined to be a new hybrid
parametric and non-parametric (HPNP) model, which fuses
the linear AR model with the bi-lateral filtering. The first AR
model is simple and it can simulate a broad range of natural
scenes by varying its parameters [38], [39]. Particularly, the
AR model is expressed by

yi = Yk(yi)ααα + εi (1)
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Fig. 5. The sample image “motocross bikes” and the associated filtered
images using AR model, bilateral filtering, and HPNP model.

where yi indicates the pixel value located at xi, Yk(yi) pro-
vides the vector for k member neighborhood of yi, ααα =
(α1, α2, . . . , αk)

T stands for an AR coefficients’ vector, and
εi represents a difference between the truthes and estimations.
To decide ααα, the linear system can represent in matrix form as

α̂αα = arg min
ααα

‖y − Yααα‖2 (2)

with y = (y1, y2, . . . , yk)
T and Y(i, :) = Yk(yi). A simple way

to solve this linear system is using the least square method and
derive the approximate solution as α̂αα = (YTY)−1YTy.

We provide an example in Fig. 5 to straightforwardly illus-
trate the visualized effect of the AR model. One can see that,
the AR model performs well at the texture regions (indicated
by blue rectangle), while it may lead to instability at edges
(indicated by red rectangle). So we further take advantage of
the bi-lateral filtering [40], which is a non-linear filtering of
good ability to preserve edges and calculate simply [41]. Also,
the bi-lateral filtering has only two variables (hx, hy), rendering
it convenient to control. We define this filtering by

yi = Yk(yi)βββ + ε′
i (3)

where βββ = (β1, β2, . . . , βk)
T indicates the coefficients’ vector

of bi-lateral filtering, and ε′
i provides the error difference. The

βββ is manipulated by the spatial Euclidean distance between xi

and xj as well as the photometric distance between yi and yj.
It can be estimated by

βj = exp

(
−∥∥xi − xj

∥∥2

2h2
x

)
exp

(
−(

yi − yj
)2

2h2
y

)
(4)

where hx and hy are assigned as 3 and 0.1 (default values)
in each local 3 × 3 part, to alter the relative importance
of the Euclidean and photometric distances. As given in
Figs. 5(b)–(c), the bi-lateral filtering usually performs better
than the AR model at image edges.

In the following, the HPNP model combines the merits
of both parametric AR model and non-parametric bi-lateral

filtering, and thus generate the estimation of ȳi to be

ȳi = γ · Yk(yi)α̂αα + (1 − γ ) · Yk(yi)βββ (5)

where γ is used for adjusting the relative contribution of the
AR model and the bi-lateral filtering. The value of γ is deter-
mined based on the criterion making texture and edge regions
to be preserved as well as possible, and is assigned to be 0.3
in this research, as displayed in Fig. 5(d).

In general, salient regions attract much attention and thus
highly influence the visual quality. Some technologies can be
used to detect visual saliency, for example, saliency detection
models [42] and phase congruency [43], [44]. But for images
with mean shifting or contrast change, luminance and contrast
information should be more decisive factors. Apart from these
two, the structural information is also considered since it may
destroy the completeness of objects and thus heavily affects
the perceptual quality of the HVS to a given scene. As thus,
this paper incorporates the luminance, contrast and structural
information for weighting. To be more concretely, for the pixel
located at xi having the value yi, we measure the luminance,
contrast and structural information by

l(yi, ȳi) = 2μμ̄ + c1

μ2 + μ̄2 + c1
(6)

c(yi, ȳi) = 2σ σ̄ + c2

σ 2 + σ̄ 2 + c2
(7)

s(yi, ȳi) = σ̃ + c3

σ σ̄ + c3
(8)

where c1, c2 and c3 are low-value fixed numbers for alleviat-
ing instability when denominators are close to zero. A 11×11
circular-symmetric Gaussian weighting function v = {vi|i =
1, 2, . . . , N} is used with 1.5 standard deviation and normal-
ized to unit sum (

∑ N
i=1vi = 1). The statistics μ, μ̄, σ 2, σ̄ 2

and σ̃ are estimated using the same way in [6]. So the weight
is defined to be

wi = l(yi, ȳi) · c(yi, ȳi) · s(yi, ȳi), (9)

and the estimation error of the difference of the truth scene
and brain’s estimations for the local pixel at xi is evaluated by

ēi = wi(yi − ȳi). (10)

I have also tried to use saliency and region of interest as
weighting, e.g., some state-of-the-art models [45]–[47]. The
results indicate that these models contribute no greater perfor-
mance than the weighting model mentioned above, but always
introduce more computational cost.

For the original image Io, the point-wise error ēi can be
computed using Eqs. (1)-(10) to get the error map Eo. The
free energy of this error map is measured by entropy:

H(Eo) = −
∑

pi(Eo) log pi(Eo) (11)

where pi(Eo) is the probability density of grayscale i in the
error map Eo. With the same manner, we measure entropy of
H(Ec) for the contrast-changed image Ic. The psychovisual
quality of Ic compared to Io within the bottom-up strategy is
finally defined as their difference:

Qbu = H(Eo) − H(Ec). (12)
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In practice, the kernel of the bottom-up strategy lies in the
HPNP model for approximating the internal generative model
in human brain. Images with high contrast and visual quality
generally have an abundant number of valuable details. Our
HPNP model is of different description abilities between low-
and high-complexity visual signals. For a fixed input image
with its free energy H(Eo), the positive contrast change will
increase the visual quality by revealing undiscernible details.
This renders the designed HPNP model inefficient to char-
acterize the contrast-altered image, and thus makes its free
energy H(Ec) higher than H(Eo) and Qbu lower than zero. On
the contrary, the negative contrast change will decrease the
visual quality by concealing details, which leads to the asso-
ciated free energy H(Ec) smaller than H(Eo) and Qbu larger
than zero.

B. Top-Down Strategy

One of important applications related to contrast alteration is
the familiar contrast enhancement technology, which can be
regarded as the positive contrast change for validly advanc-
ing the contrast and raising the visual quality of an input
image. Broadly speaking, contrast enhancement targets to cre-
ate a more informative or visually-pleasing image or both.
Observers often regard enhanced images as removing a cur-
tain of fog from a picture [26]. For example, as shown in
Fig. 4(e), the four images processed by logistic transfers seem
to thin the fog from the associated source image and attain a
certain improvement of visual quality.

In existing contrast enhancement technologies, histogram
equalization (HE) is possibly the easiest and widely used solu-
tion, which aims to increase the image informativeness. Its
fundamental idea is to redistribute values of pixels in terms of
the probability distribution of gray levels of the input image,
for the purpose of flattening and stretching the dynamic range
of image histogram and give an global contrast improvement.
Yet the HE is very likely to introduce artifacts, cause a consid-
erable change on the mean brightness, and produce undesirable
visual deterioration. So this technique is presently considered
to be far less than the ideal contrast enhancement algorithm.

In the last several years, some solutions were designed to
modify HE, in order to overcome those drawbacks [26], [27].
In [26], the authors suggested that the enhanced image should
be not far from its original image, and they provided a com-
promise scheme. Instead of using the uniformly distributed
histogram hu as the target histogram, their goal is to find a
modified histogram h̃ that is near to hu as desired, but also not
far from the original image histogram ho. This is a bi-criteria
optimization problem, and can be formulated as a weighted
sum of the two objectives:

h̃ = arg min
h

‖h − ho‖ + φ‖h − hu‖ (13)

where h̃, h, ho, hu ∈ R256×1, and φ is a control parameter
varying over [0,∞).

Inspired by Eq. (13), we in the top-down strategy concen-
trate on measuring two distances; one is between the histogram
hc of the contrast-changed image and ho, and the other is

between hc and hu. Nonetheless, the construction of the top-
down model is not straightforward. Firstly, we find that hu
is not a good choice, because the histograms of most images
cannot be distributed uniformly after HE due to various image
contents or scenes. Instead, this paper applies the equalized
histogram he that is produced from ho using HE. Secondly,
it is important to note that the free energy in the bottom-up
strategy is measured by entropy, so we had better evaluate
the aforesaid two distances with the same dimension for the
combination of bottom-up and top-down models to predict the
visual quality score of the contrast-adjusted image. The K-L
divergence [31], probably the most frequently used “distance”
that compares the distinction between two probability distri-
butions in probability theory and information theory, is of the
expected dimension. Given two probability densities p0 and
p1, the K-L divergence is defined as

DKL(p1‖p0) =
∫

p1(x) log
p1(x)

p0(x)
dx. (14)

This K-L divergence is however non-symmetric and easy
to bring some troubles in real applications. Simple examples
illustrate that the ordering of the arguments in the K-L dis-
tance might yield substantially different results. We resort to
the symmetric K-L divergence accordingly. In [32], the authors
have summarized many symmetric forms of K-L divergence,
e.g., algebraic mean and geometric mean. Here we consider
using the symmetrized and smoothed Jensen-Shannon (JS)
divergence as follows:

DJS(p0, p1) = 1

2
DKL(p0‖ p̄) + 1

2
DKL(p1‖ p̄) (15)

with

p̄ = 1

2
(p0 + p1). (16)

Except for the J-S divergence, there are many com-
monly used alternative methods, including Earth Mover’s
Distance [48], histogram intersections [49], [50], and L norms
(L = 1, 2,∞). It was found by performance comparisons
that the J-S divergence performs the best in this application
scenario, Earth Mover’s Distance and histogram intersections
perform fairly, and three typical L norms perform poorly. As
thus, we finally determined to employ the J-S divergence.

As a consequence, given three probability densities po, pe

and pc for an original image and its HE and contrast-altered
counterparts, the quality of Ic compared to Io within the top-
down part is determined by

Qtd = DJS(pc, po) + sDJS(pc, pe) (17)

where s is a fixed weighting parameter for altering the relative
importance between the above two distances. The value of s
is empirically assigned as 2. More discussion regarding its
sensitivity will be provided in the next section. The analyses
in the histogram modification method point out that proper-
contrast images should be a good tradeoff between the original
image histogram and the uniformly distributed one. Our top-
down model is properly developed for this, and it can thereby
judge the quality levels of contrast-changed images.
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Fig. 6. The flowchart of the proposed RCIQM algorithm.

C. The Combination Stage

Popular contrast enhancement technologies are devoted to
highlighting undiscernible details [28] or redistributing image
histogram [26], [27]. Given an image, the former bottom-up
model aims to estimate how much detailed information is con-
tained, while the latter top-down model is to measure whether
the histogram is properly distributed. From the viewpoint of
working, these two models play complementary roles. As thus,
we fuse bottom-up and top-down strategies to approximate the
HVS perception to the contrast-altered image quality. Since
the quality measures based on the two models are of the same
dimension (i.e., entropy) in our research, they can be directly
integrated. The RCIQM is finally defined to be a simply linear
function combining the two quality predictions in bottom-up
and top-down parts:

RCIQM = Qbu + tQtd (18)

where t is a constant weight that is used to control the relative
significance between the bottom-up and top-down strategies.
The value of t is empirically assigned to be 0.3. We will
analyze its sensitivity in the next section. The parameters s
and t are determined by making the proposed RCIQM metric
have the optimal correlation with human judgements of qual-
ity using the CCID2014 database. All the parameters used in
the proposed RCIQM model have fixed values. We present the
flowchart in Fig. 6 for helping readers to readily understand
how the RCIQM metric works.

Furthermore, we want to discuss why the proposed RCIQM
is a RR IQA metric. In the bottom-up model, the RR feature
only includes one single number of the free energy H(Eo),
and two histograms ho and he are required to transmitted as
the ancillary information in the top-down part. In reality, he
is the output of the equalized ho. So the RR information used

in RCIQM just includes H(Eo) and ho (totally 257 numbers),
far less than the size of the original image. Besides, a supple-
mentary specification is that, according to the convention, this
paper utilizes different signs (e.g., po and ho, pe and he) but
with the same meaning.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Testing Metrics and Databases

In this paper, we validate the proposed RCIQM algo-
rithm and compare with an enormous number of classi-
cal and state-of-the-art IQA metrics: 1) Classical FR IQA:
PSNR, SSIM [6], and MS-SSIM [7], which mainly focus
on the visual quality evaluation for frequently encountered
JPEG / JPEG2000 compression, Gaussian blur, and white
noise; 2) State-of-the-art FR IQA: FSIM [12], GSI [13], local-
tuned-global model (LTG) [14], and visual saliency induced
index (VSI) [15], which were recently designed to cope with
a broad range of distortion types that, apart from the above
typical types, also include quantization noise, non eccentric-
ity pattern noise, and etc; 3) Recently devised RR IQA:
FEDM [17], SDM [18] and RIQMC [30], which assume
that partial original references can be made available as side
information to help to predict quality of the distorted image.

Currently, subjective image quality databases that have been
released to public mainly involve compression, blur and noise
distortions. To our knowledge, there only exist five con-
trast related image databases / subsets (CID2013, CCID2014,
TID2008, TID2013 and CSIQ), which were selected as
the testing bed in this work. The CID2013 database [29],
which was proposed in our recent work. It has totally 400
images produced from 15 reference images with mean shift-
ing and four kinds of transfer mappings. The MOS of
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TABLE II
PERFORMANCE INDICES ON TID2008, CSIQ, TID2013 AND CID2013. WE BOLD THE TOP TWO MODELS

each image is available and ranges from 1.4 to 4.2. The
CCID2014 database [30], which supplements three new dis-
tortion types − positive and negative gamma transfers and
compound functions with mean-shiftings followed by logistic
functions − to the CID2013 database. This database encom-
passes 655 contrast-altered images, whose MOS values range
from 1.4 to 4.4.

The TID2008 database [33], which involves 200 mean-
shifted and contrast-adjusted images derived from 25 reference
images (24 natural images and one artificial image) at four
levels of distortions. The MOS of each image is from 3.4
to 7.7. The TID2013 database [34], which extends the orig-
inal four distortion levels in TID2008 to five, generates a
total number of 250 mean-shifted and contrast-altered ver-
sions. The MOS of each image ranges from 2.6 to 7.2. The
CSIQ database [11], which consists of 116 images of contrast
change that are created from 30 source images at three to four
degradation levels. The DMOS of each image is available and
ranges from 0 to 0.7.

B. Evaluation Protocols

Using the five image databases / subsets, the objective
prediction estimations of each competing IQA models is

computed after conducting the nonlinear regression to map
quality scores to human ratings with the five-parameter logistic
regression function [51]:

q(ε) = φ1

(
1

2
− 1

1 + eφ2(ε−φ3)

)
+ φ4ε + φ5 (19)

where ε and q(ε) respectively indicate the raw and mapped
scores, and φj ( j = 1, . . . , 5) are free parameters to be ascer-
tained. Five typical performance indices, according to sugges-
tions given by the Video Quality Experts Group (VQEG) [51],
are used to evaluate and compare the proposed RCIQM with
the competing IQA models tested in this study. The first
index Pearson linear correlation coefficient (PLCC) is mea-
sured between MOS scores and objective evaluations after
nonlinear regression by Eq. (19), in order to measure the
prediction accuracy. The second and third indices Spearman
rank-order correlation coefficient (SRCC) and Kendall’s rank-
order correlation coefficient (KRCC) are to compute the
monotonicity by ignoring the relative distance between the
data, which are independent of any monotonic nonlinear map-
ping between subjective and objective quality scores. The last
two indices average absolute prediction error (AAE) and root
mean-squared (RMS) error are to quantify the difference of
the subjective quality scores and converted objective IQA
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Fig. 7. Scatter plots of MOS / DMOS versus classical FR SSIM, recent FR LTG, RR SDM, and our RR RCIQM models on five databases.

predictions after the nonlinear mapping of Eq. (19). Among
these evaluations, a value close to 1 for PLCC, SRCC and
KRCC, and near to 0 for AAE and RMS means superior
correlation with subjective opinions.

C. Performance Evaluation

Table II presents the performance indices of the proposed
RCIQM and other ten IQA methods on CID2013, CCID2014,
TID2008, TID2013 and CSIQ databases. For comprehensive
comparisons, we further calculate the average results across
the five databases above, which is defined by

δ̄ =
∑

i δi · πi∑
i πi

(20)

where δi (i = 1, 2, 3, 4, 5) stands for the correlation measure
for each database. For the database size-weighted average, πi

are set as the number of images in each database, i.e., 400
for CID2013, 655 for CCID2014, 200 for TID2008, 250 for
TID2013, and 116 for CSIQ. Table II also reports the database
size-weighted average results.

Referring to the nature of our proposed metric and the
results listed in Table II, we give three conclusions. First, it is
apparent that our metric achieves very promising result on each
database and the weighted average. We note that only the pro-
posed RCIQM technique has acquired the SRCC values larger
than 0.92 on the CID2013 database, and greater than 0.85 on
the large-scale CCID2014, TID2008 and TID2013 databases.

TABLE III
STATISTICAL SIGNIFICANCE COMPARISON WITH THE F-TEST

Although a few IQA models (e.g., FEDM and RIQMC) work
well in the CSIQ database, our RCIQM is also of the highest
performance, even higher than 0.95 in linearity (Pearson) and
monotonic measure (Spearman).

Second, as compared to FR- and RR-IQA algorithms tested
in this paper, it can be readily viewed that the proposed
RCIQM is of the optimal performance on average, clearly
better than the second-place RIQMC and the third-place LTG
methods. In fact, almost all FR and RR IQA methods assume
that the reference image is prefect. But there exist contrast-
changed images produced by the positive contrast alteration
have better quality than their original ones, and this leads to
serious deterioration in the performance of FR and RR IQA
techniques when assessing contrast-altered images.
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TABLE IV
PERFORMANCE COMPARISON OF VARIOUS AMOUNTS OF RR INFORMATION. WE BOLD THE TOP TWO METRICS

Third, our algorithm has many advantages over those in
existing literature. For example, our RCIQM is insensitive to
small translations and rotations that hardly influence the image
quality or semantics. This phenomenon is mainly because
the components of our metric, including the global image
histogram and free energy entropy, are almost unchanged dur-
ing small translations and rotations. Conversely, most existing
IQA metrics predict severe visual quality degradation under
these situations, since they compare the original and distorted
images in a point-wise or block-based manner.

D. Visualized Comparison

Furthermore, we show scatter plots of classical FR SSIM,
state-of-the-art FR LTG and RR SDM, and our RCIQM met-
rics on CID2013, CCDI2014, TID2008, TID2013 and CSIQ
databases in Fig. 7. It is easy to find that our technique has
acquired the impressive linearity and monotonicity, which also
confirms the substantially high performance of our metric on
the visual quality evaluation of contrast-changed images.

E. Statistical Significance

Additionally, the f-test is adopted to compute the statistical
significance of the presented algorithm. The f-test measures the
prediction residuals of the converted objective quality scores
(after the five-parameter logistic nonlinear regression function)
and subjective MOS/DMOS values. Suppose F be the ratio
of two residual variances and Fc (decided by the residuals’
number and confidence level) be the judgement threshold, the
performance distinction of two testing IQA metrics is regarded
as significant in case of F > Fc. We show the statistical

significance between the proposed RCIQM and other testing
IQA metrics in Table III, in which the symbol “+1”, “0” or
“-1” stands for that our model is statistically superior, indis-
tinguishable, or inferior to the associated metric. Clearly, our
RCIQM operates very well. On the four large-scale CID2013,
CCID2014, TID2008 and TID2013 databases, the proposed
model outperforms nearly all testing IQA metrics. Our method
is superior to most IQA models but is only comparable to
FEDM and RIQMC on the CSIQ database. Overall, our tech-
nique is currently of the best performance for the IQA of
contrast adjustment.

F. Analysis on RR Information

For a RR IQA metric, besides the correlation performance,
one important index is the amount of RR information used.
The RR information in our RCIQM technique consists of one
single number of free energy entropy and a global histogram
with 256 bins extracted from the pristine image. A simple
but valid way for reducing the RR information is to combine
the neighboring bins in the global histogram together. Here
we fuse n adjacent bins to one, where n is assigned to be
1, 2, 4, 8, 16, 32 and 64, respectively. We dub these met-
rics as RCIQM1, RCIQM2, RCIQM4, RCIQM8, RCIQM16,
RCIQM32 and RCIQM64, which all adopt the same parameters
used in RCIQM.

Notice that the RCIQM1 is itself our original proposed
RCIQM algorithm with 257 (=256+1) numbers as RR features,
while the rest six metrics require 129 (=128+1), 65 (=64+1),
33 (=32+1), 17 (=16+1), 9 (=8+1) and 5 (=4+1) numbers in
sequence. We present the performance evaluations of the above



80 IEEE TRANSACTIONS ON BROADCASTING, VOL. 63, NO. 1, MARCH 2017

seven approaches and the effective LTG model on five test-
ing image databases and the weighted average in Table IV,
where the amount of information used in each quality met-
ric is also provided for comparison. It can be readily found
that as the number of RR features reduces, the performance
of our metric decreases in most cases but with a very small
amount. For example, the RCIQM64 with only 5 numbers as
RR information has also attained better prediction accuracy
than the recent LTG method (the best in testing FR-IQA meth-
ods) on average. That is to say, in addition to an effective RR
IQA approach, this paper provides more choices between the
correlation performance and the amount of RR information
as well.

V. CONCLUSION

In this paper, we have investigated into the problem of IQA
with contrast change, and introduce a new Reduced-reference
Contrast-changed image Quality Index (RCIQM) by combin-
ing bottom-up and top-down strategies. Considering that the
visual quality of the contrast-altered image is highly con-
nected to the psychovisual mechanism in the human brain, the
bottom-up strategy applies the new HPNP model with lumi-
nance, contrast and structural information for weighting. In the
top-down strategy we compare the histogram of the contrast-
changed image with those of the original and histogram
equalized versions using symmetric K-L divergence. Results
of experiments on five contrast related databases (namely,
CID2013, CCID2014, TID2008, CSIQ and TID2013) verify
the superiority of our proposed RCIQM over up to ten classi-
cal / state-of-the-art FR- and RR-IQA models in quantitative
performance measures and statistical significance comparison.
Furthermore, we want to stress that: 1) no matter how large the
image size is, such as 4K HD (high definition), the proposed
method merely needs a single number of free energy (in the
bottom-up strategy) and fixed numbers of global histogram of
the original image (in the top-down strategy); 2) our algorithm
is insensitive to small translations and rotations which exert
very little influence on visual quality in comparison with most
existing IQA approaches, which makes RCIQM effective in a
wide range of environments.
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